If it's not what You are looking for type in the equation solver your own equation and let us solve it.
142=3z^2-5
We move all terms to the left:
142-(3z^2-5)=0
We get rid of parentheses
-3z^2+5+142=0
We add all the numbers together, and all the variables
-3z^2+147=0
a = -3; b = 0; c = +147;
Δ = b2-4ac
Δ = 02-4·(-3)·147
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*-3}=\frac{-42}{-6} =+7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*-3}=\frac{42}{-6} =-7 $
| 5(6-7m)+14=-166 | | 10n-18n-5=-29 | | 33=-3(-2y+3) | | 33=-3(-2y+3 | | y/12=61/8 | | 6(2y-9)=−42 | | 180-x=3(90+x)+14 | | 6y−5=3y+1 | | 48-(3c=4)=4(c+7)+c | | (3w-5)(w-1)=w²+3/2 | | 6y−6=3y+0 | | 0=10xx32 | | 36x3=48x4 | | h/100=2/35 | | 33+4x=-1x-7 | | 5x+3x+42=360 | | 8x+1=2x-37 | | X(x-2)=168 | | 5h+5h−5=15 | | 49x^2+90=0 | | w+7/15=6w+2/10 | | -6s=-2−6s | | 2x-4=10x+5 | | 3x-20=2(x—5) | | 3x=—29 | | n÷9=5 | | 4n+7=8n+10 | | 4f−5f=-f | | 7u-3u+-14u=20 | | 3u-3u+u-u+u=4 | | 19r-9r=20 | | -26j+21j=13 |